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ABSTRACT: We present systematic studies for the binding of small
model proteins to ligands attached to the inner walls of long
nanochannels and short nanopores by polymeric tethers. Binding of
proteins to specific ligands inside nanometric channels and pores leads
to changes in their ionic conductance, which have been exploited in
sensors that quantify the concentration of the proteins in solution. The
theoretical predictions presented in this work are aimed to provide a
fundamental understanding of protein binding under geometrically
confined environments and to guide the design of this kind of
nanochannel-based sensors. The theory predicts that the fraction of the
channel volume filled by bound proteins is a nonmonotonic function of the channel radius, the length of the tethers, the surface
density of the ligands and the size of the proteins. Notably, increasing the density of ligands, decreasing the size of the channel or
increasing the size of the protein may lead to a decrease of the fraction of the channel volume filled by bound proteins. These
results are explained from the incomplete binding of proteins to the ligands due to repulsive protein−protein and protein−ligand
steric interactions. Our work suggests strategies to optimize the change in conductance due to protein binding, for example: (i)
proteins much smaller than the radius of the channel may effectively block the channel if tethers of appropriate length are used,
and (ii) a large decrease in conductance upon protein binding can be achieved if the channel and the protein are oppositely
charged.

■ INTRODUCTION

Solid-state nanopores and nanochannels are promising plat-
forms for analytical and bioanalytical devices. In these systems,
the presence and concentration of an analyte in solution are
determined from changes in the ionic conductance of the
channel. There are two main sensing strategies. In the first
sensing method, the conductance of a single pore is
continuously measured in the presence of an applied potential
that drives the translocation of the analyte through the pore.
The stochastic translocation events of the analyte give rise to
transient changes in conductance, known as resistive pulses,
and the concentration of the analyte is determined from the
frequency of these pulses.1−4 In the second sensing strategy, the
steady-state conductance of a single nanochannel or an array of
nanochannels is measured before and after addition of the
analyte. Binding of the analyte to specific ligands on the inner
walls of the channel results in changes in the channel
conductance that depend on the concentration of the analyte
in solution.5−7 The first strategy (observation of single
stochastic translocation events) has received much attention
in recent years due to the possibility of extracting information
about the translocating molecule, such as the sequence of DNA
or RNA chains, from the shape and duration of the resistive
pulse. There exists extensive theoretical and simulation work on
the translocation of polymers, polyelectrolytes and nano-

particles through pores and channels and the underlying
physics is relatively well understood.8,9 The second strategy,
changes in conductance due to specific binding, is a promising
technology because it can be implemented in nanopore
arrays7,10,11 and mesoporous materials,11,12 thereby avoiding
the need of single-pore membranes. Moreover, this strategy
displays high (bio)chemical specificity because it uses ligands
that are specific for the analyte of interest.5−7,13−17 However,
the molecular basis of this strategy remains largely unexplored.
Reaching such fundamental knowledge requires the under-
standing of the competition among physical interactions,
molecular organization and ligand−receptor chemical equilibria
in confined environments. In the present work, we use a
molecular theory to systematically study the binding of proteins
to specific ligands lining the inner walls of long nanochannels
and short nanopores.
Ligand−receptor binding within a nanochannel affects ionic

conductance by a combination of two mechanisms:14,18,19 (i) a
decrease in the volume available for ion transport due to
volume exclusion by the bound species and (ii) changes in the
concentration of mobile ions within the channel due to the
electrostatic charges introduced by the bound species. Examples
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exploiting these mechanisms have been developed to sense
proteins,5−7,14−16,20 DNA,13,21−24 small organic mole-
cules11,17,25,26 and metal ions12,15,27−29 in solution. Martin
and co-workers first demonstrated this strategy by studying
different ligand−receptor systems in gold-coated conical
nanochannels.5,24 Karnik et al. studied the binding of
streptavidin to biotin-modified nanochannels as a function of
ionic strength and showed that the resulting ionic current is
dictated by the combination of the two mechanisms described
above.14

Figure 1 shows a schematic representation of the system
under study in the present work. We consider nanochannels

(radius much smaller than length) or nanopores (radius and
length of similar dimensions) whose inner walls are coated with
ligands specific for the proteins in solution. In many
experimental studies the ligands are linked to the channel
walls either by polymeric or oligomeric tethers6,10 or by long
molecular spacers.13,14 Therefore, we consider in this work
spacer tethers of different length connecting the ligands to the
channel walls. The use of long and flexible spacers is motivated
by experimental30−32 and theoretical15 evidence indicating that,
in planar systems, they lead to better binding efficiencies than
short rigid tethers. The number of monomers per tether is N
and the surface coverage of the tethers, i.e., number of grafted
polymers per unit area of the channel, is σ. The free end of each

tether carries the ligand (L) that can specifically bind to a
receptor (R) located on the surface of a protein in solution in
order to form a ligand−receptor (LR) bound pair. The
chemical equilibrium between the bound and unbound species
can be written in the form

⇌ +LR L R (1)

This chemical equilibrium has an intrinsic dissociation
constant in bulk solution, which in the calculations presented
here is Kθ

d = 10−15 M. This value corresponds to that of the
biotin−avidin system.33 This dissociation constant is much
smaller than the range of protein concentrations explored in
this work, therefore the LR pairs are thermodynamically very
stable in the bulk solution. Interestingly, as we discuss below,
the role of nanoconfinement can result in dramatic changes in
the apparent dissociation constant and thus the bound pair may
not be thermodynamically stable inside the channel. Each
protein is modeled as a spherical particle of radius Rprot and
charge Qprot with a single receptor located on its surface. Free
proteins in solution can freely translate and rotate and
participate in ligand−receptor binding with the ligands. In
addition to free proteins, the solution contains water molecules
and mobile ions (salt anions and cations, protons and hydroxyl
ions). Note that the reservoirs are much larger than the
nanochannel, thus binding of proteins to the channel walls does
not decrease their concentration in solution (i.e., the protein
concentration in solution is fixed).
We present here a systematic study of the effect of the

geometry of the channel, the ligand-spacer molecule and the
proteins on the amount of bound proteins and the conductance
response of the channel. To this end we apply a molecular
theory that incorporates the size, shape, conformations, charge
and charge distribution of the different molecular species and
treats the steric, van der Waals and electrostatic interactions
explicitly coupled with the ligand−receptor binding equili-
brium. The theory is presented in the Methods section. For
neutral proteins, we predict that the fraction of the channel
blocked by the bound proteins is a nonmonotonic function of
the size of the channel, the surface density of the ligands and
the length of the polymeric tether. Thus, increasing the surface
density of the ligands or decreasing the radius of the channel
may decrease the fraction of the channel that is filled by bound
proteins. These responses arise from the expulsion of the
proteins from the channel due to an increase in the excluded
volume interactions. We also discuss the case where the
proteins and the channel are charged in order to show that
large conductance changes due to protein binding can be
achieved when the charge of the channel is opposite to that of
the protein.

■ RESULTS
Structure of the Bound Protein Layer. We start by

discussing the structure of the layer of bound proteins for a
typical set of parameters: a very long cylindrical channel of
radius R = 5 nm and L ≫ R (under this condition the system is
homogeneous in the z direction due to translational symmetry),
tethers of 10 segments and a protein of diameter 2.25 nm, a
bulk concentration of 500 nM and zero charge (i.e., at its
isoelectric point). The polymer tethers are models for
poly(ethylene oxide); i.e., 10 segments corresponds to PEG-
440. Figure 2a shows the number density of bound proteins as
a function of the distance from the inner wall of the channel
(this is the number density of the centers of the proteins). The

Figure 1. Schematic representation of the system under study along a
plane parallel (a) and perpendicular (b) to the channel main axis. The
inner walls of a cylindrical nanopore or nanochannel of radius R and
length L are coated with ligands that specifically bind to proteins in
solution. The ligands have a surface density σ and are connected to the
channel walls by flexible polymeric tethers of N segments. The
solution contains water molecules, cations, anions, protons, hydroxyl
ions and unbound proteins, which can freely rotate and translate. Each
protein is modeled as a sphere of radius Rprot and charge Qprot, which
have only one receptor site for the ligands on its surface.
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density of bound proteins shows two peaks, which correspond
roughly to two layers of proteins. The density of the first
protein layer peaks at 1.125 nm from the surface, which is equal
to the radius of the protein and, therefore, the first layer
comprises proteins that are in contact with the channel wall. It
is favorable to place the first layer of proteins adjacent to the
inner wall in order to allow the binding a second protein layer
far from the wall. In addition, the cylindrical geometry of the
channel implies that the available volume is maximal close to
the surface, enabling the binding of a large number of proteins
near the wall of the channel. The centers of the proteins in the
second layer have a peak density at 2.9 nm from the channel
walls (see Figure 2a). This distance is smaller than the sum of
the protein radius (1.125 nm) and the length of a fully
stretched tether (2.8 nm), therefore, the linkers that bind to

proteins in the second layer are not completely stretched. Note
also that the distance between the two protein layers (1.7 nm)
is smaller than the protein diameter (2.25 nm), which indicates
interpenetration between the bound protein layers. Therefore,
the two-layer structure is a good description in terms of the
distribution of the protein centers but it is important to
emphasize that due to interpenetration and positional disorder
(i.e., broadness of the peak far from the surface) the structure of
the system is not that of two perfectly positioned layers. Note
that Figure 2a shows only the density of bound proteins. The
density of free proteins (shown in Figure S4 in the Supporting
Information) within the channel is much smaller than that of
bound proteins, and drops almost to zero near the walls due to
steric repulsion with the tethers and bound proteins. Therefore,
the free proteins inside the channel do not affect, in any
important degree, the conductance of the channel.
Figure 2b shows a cartoon of the organization of the proteins

in the same length scale used in panel a. The vertical red dashed
lines indicate the position of the centers of the bound proteins.
The predicted distribution displayed in Figure 2a shows that
the proteins bound in the first layer are highly localized (within
less than 0.5 nm) while the second layer is spread over 1.5 nm.
Figure 2c shows the number density of the end-group ligands

as a function of the distance from the wall. The ligand density
before binding (black line) exhibits only one peak. The
formation of bound pairs leads to a second peak in the
distribution (red line). In other words, the conformation of the
tethers changes in order to facilitate protein binding. The
density of ligands that are bound to a receptor (blue line)
displays two peaks, which correspond to the two protein layers.
The green vertical dashed lines show the position of these
peaks in the scheme of Figure 2b. In Figure 2c, the peak closest
to the channel wall is broad, which contrasts with the sharp
peak observed in the density profile of Figure 2a. This result
indicates that the proteins in the first layer have their centers
located within a narrow region from d = 1.125 nm to d ∼ 1.5
nm, but their binding groups are broadly distributed; therefore,
there is a broad distribution of protein orientations. On the
other hand, the second peak in the density of ligands in Figure
2c is sharper than the first peak, which suggests that the
proteins in the second layer are more oriented than those in the
first layer, even though they are spatially more delocalized
(broad second peak in Figure 2a). The orientation of the
protein can be quantified with the orientational order
parameter S(r):

θ= −
S r

r
( )

3 cos ( ( )) 1
2

2

(2)

where r is the radial position of the ligand−receptor bond, θ(r)
is the angle between the vector that connects the center of the
protein and its binding site and the vector normal to the surface
(see Figure 2b) and the brackets denote an ensemble average
over all proteins that are bound to a ligand at r. The limits of
the order parameter are S = 0 for a completely isotropic
orientation and S = 1 or −1/2 when the vector connecting the
center of the protein and its binding site is normal or parallel to
the surface, respectively.
Figure 2d shows large changes in the order parameter for the

bound ligands depending on their distance from the surface of
the channel. The ligand−receptor bonds that are in contact
with the surface must arise only from proteins oriented
perpendicular to the channel wall and, therefore, the plot in

Figure 2. (a) Number density of proteins (determined using the
center of the protein) as a function of the distance from the wall of the
channel. (b) Schematic representation of the system. The proteins are
depicted in the same scale as in panel a. The position of the peaks in
the protein density profile (panel a) and the bound-ligand density
(panel c) are shown with vertical dashed lines. The inset shows a
scheme in a smaller scale than the main figure. (c) Number density of
the ligands before (black line) and after (red line) protein binding.
The number density of the ligands that are bound to proteins (after
protein binding) is shown with the blue line. (d) Orientational order
parameter, S, for the proteins bound to the ligands, as defined in eq 2.
The angle θ for each bound protein is shown in panel b. The
calculations were performed for N (tether length) = 10, σ (surface
coverage of ligands) = 0.05 chains·nm−2, R = 5 nm, an infinitely long
channel (L ≫ R) and no protein−protein attractions (χ/χC = 0.0).
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Figure 2d has an order parameter equal to 1 for d = 0. As the
distance between the ligand−receptor bond and the surface
increases, the number of possible orientations of bound
proteins also increases. At the distance where the density of
ligands is maximal (d ∼ 1 nm), protein orientation is almost
completely random (order parameter close to zero). It is
important to emphasize that the order parameter for a ligand−
receptor bond located at d has contributions from proteins with
centers at different distances from the surface, thus the random
orientation observed for ligand−receptor bonds at d ∼ 1 nm
corresponds to weighted average of all those positions of
protein centers, as shown in Figure S2 of the Supporting
Information. Figure 2d shows that S = 0.7 at the position of the
ligands of the second protein layer. The proteins in the second
layer are preferentially oriented perpendicularly to the surface
in order to optimize binding while reducing protein−protein
and protein−tether repulsive interactions. Note that the total
number of proteins in a layer is the product of the protein
density in that layer by the volume of the cylindrical shell
occupied by the layer. This volume decreases as the distance
from the surface increases due to the cylindrical geometry of
the system, and therefore, the number of bound proteins in the
second layer is smaller than those in contact with the channel
wall.
The differences in orientational and positional order of the

proteins are a manifestation of the interplay between entropy,
packing and interactions. The first layer is positionally ordered
but orientationally disordered because the proteins locate in the
vicinity of the surface. Therefore, the conformational entropy of
bound tethers is maximized through a broad distribution of
protein orientations. The second layer is positionally disordered
but orientationally ordered because the tethers have to stretch
to reach the proteins and therefore the proteins preferentially
orient perpendicularly to the wall. A rather broad distribution of
protein positions grants some conformational disorder to the
tethers in order to avoid entropic penalties.
Blocking of Long Nanochannels by Neutral Proteins.

We will systematically explore first the case where both the
proteins in solution and the channel inner walls are electrically
neutral. The use of nanopores and nanochannels in analytical
chemistry exploits changes in conductance upon the binding of
species in solution into the channel.5−7 The ability of
uncharged proteins to change the conductance of the channel
upon binding results from the reduction of available volume in
the channel. Namely, the presence of the bound species
decreases the cross-sectional area available for ion transport.
The change in conductivity is, therefore, controlled by the
percentage of the total volume of the channel that is occupied
by the bound proteins. We define this percentage of the volume
occupied by the bound proteins as %F. Another important
indicator is the average fraction of ligands in the channel that
are bound to a protein, ⟨f bound⟩, which measures the extent of
the ligand−receptor bond-formation reaction. In other words,
⟨f bound⟩ is related to the apparent dissociation constant within
the channel (to be defined and quantified later). We calculate
⟨f bound⟩ from

∫ ∫
∫

⟨ ⟩ =
⟨ ⟩ ′ ′

⟨ ⟩
f

n f

n

r r r r r

r r

( ) ( , ) d d

( ) d
l

l
bound

b

(3)

where ⟨nl(r)⟩ is the number density of ligands at r and f b(r,r′)
is the fraction of ligands at r that are bound to proteins with
center at r′. Finally, we will define σprot as the total amount of

bound proteins per unit area of the channel, which is given by
the product of the fraction of bound ligands multiplied by the
surface coverage of ligands, σprot = σ·⟨f bound⟩.
Figure 3a shows %F as a function of the channel radius and

the surface coverage of the ligands (which are linked to the

channel wall by 10-segment tethers). The filling of the channel
is maximum for R ∼ 4 nm and σ ∼ 0.06 chains·nm−2.
Interestingly, %F varies nonmonotonically with σ and R. In
principle, a monotonic increase in the number of bound
proteins with the surface coverage of the ligands would be
expected. However, our theory predicts that %F can decrease
with σ. There are several factors that need to be considered to
understand the nonmonotonic dependence shown on Figure
3a. For planar surfaces, theory predicted15 and later experi-
ments confirmed,34,35 that the amount of binding in the
presence of tether spacers is a nonmonotonic function of the

Figure 3. Color maps showing the percentage of the nanochannels
volume occupied by bound proteins (%F, panel a), the average fraction
of ligands that are bound to the proteins (⟨f bound⟩, panel b) and the
number of protein bound per unit area (σprot, panel c) as a function of
channel radius, R, and surface coverage, σ. Other calculation
parameters: N = 10, χ/χC = 0.0. Open circles indicate the conditions
of the calculations in Figure 4.
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surface density of ligands. In the theoretical calculations15 it was
found that the tethers at low densities allow for the
organization of the bound proteins in several layers. However,
as the surface coverage increases, the polymers stretch due to
lateral osmotic repulsions and do not leave space within the
layer for proteins to bind. In the case of narrow channels one
also needs to consider the additional complexity that as the
distance from the surface increases the available volume
decreases. We present next a detailed description of each of
these effects.
The decrease of %F with σ for large σ is explained by the

decrease of ⟨f bound⟩ with σ, see Figure 3b, which results in a
nonmonotonic dependence on σ of the bound proteins per unit
area, σprot = σ·⟨fbound⟩, see Figure 3c. Note also that despite the
fact that the bulk concentration of proteins (5 × 10−7 M) is
much larger than the dissociation constant (Kθ

d = 10−15 M), the
fraction of bound ligands in Figure 3b can be very small, and
close to zero, due to protein−protein and protein−tether steric
repulsions and spatial confinement, in particular at small R and
large σ. For large R (R > 25 nm) the values of ⟨f bound⟩ and σprot
in Figure 3a and 3b become independent of R because the
length of the linkers is much smaller than the radius of the
channel and the system behaves as a planar surface.
In order to understand the competition between binding and

confinement that results in the nonmonotonic dependence of
%F with the surface coverage, we look at the distribution of the
bound proteins and tethers in the system. The cases considered
in Figure 4a−c are marked with circles in Figure 3 and
correspond to three different surfaces coverages for R = 7.5 nm
and N = 10. For these cases the length of the fully extended
tethers (2.8 nm) is shorter than the channel radius. We choose
these particular three cases in order to better understand the
nonmonotonic binding within the nanochannel (see symbols in
Figure 3).
Figure 4a shows the number density of bound proteins as a

function of the distance from the channel wall, d. For σ = 0.01
and 0.05 chains·nm−2, the proteins show a maximum in the
bound density at 1.125 nm, which corresponds to proteins in
contact with the channel wall. At the lowest surface coverage of
tethers (black line) the density of bound proteins decreases
monotonically after the maximum. At this low surface coverage
all the ligands have bound proteins (left symbol in Figure 3b).
For the intermediate surface coverage (red line) the density of
proteins shows a second peak at 2.88 nm from the surface,
leading to a bilayer structure of the bound proteins. This
organization maximizes the number of ligand−receptor bonds,
even at the cost of some steric repulsion, as we explained above
(Figure 2). Note that the fraction of bound ligands is still close
to 1 (middle symbol Figure 3b). The difference between the
intermediate and the low surface coverage is that the number of
bound proteins is larger and therefore, the best way to
accommodate the additional proteins is by stretching some of
the tethers.
When the surface coverage of the tethers is increased to 0.5

chains·nm−2 (blue line), the tether−tether and tether−protein
repulsions increase significantly. The first observation is that
there is a significant shift in the position of the first protein
density peak toward larger distances from the surface. This is
due to the larger volume fraction occupied by the tethers in the
vicinity of the surface, as shown in Figure 4c (blue line). The
depletion of the proteins from the surface results in the two
peaks for the density of bound proteins to be closer than for the
more dilute case. In reality this structure optimizes the volume

distribution of both proteins and tethers that are allowed for
this given chain length of polymer. Interestingly, the depletion
from the surface results in a very small fraction of bound
proteins (right symbol Figure 3b) that corresponds to an
absolute number of bound proteins similar to that predicted for
the case of intermediate surface coverage, even though the
surface coverage in that case was five times smaller than in the
high surface coverage case. This example demonstrates the very
important role that molecular organization within the confined
system plays in determining the binding, where more is not
necessary better. We next describe the role that the different
design parameters play in the interplay between binding
optimization and nanoscopic confinement.

Figure 4. (a,d) Density of bound proteins (determined using the
centers of the proteins), (b,e) volume fraction of the bound proteins
and (c,f) volume fraction of the polymeric tethers as a function of the
distance from the wall of the channel, d, for different surface coverages
of the ligands and (a,b,c) R = 7.5 nm, N = 10 or (d,e,f) R = 3 nm, N =
20. The calculation parameters used in a, b and c are indicated with
open circles in Figure 3.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b05032
J. Am. Chem. Soc. 2015, 137, 12539−12551

12543

http://dx.doi.org/10.1021/jacs.5b05032


The role of small channel size is presented in Figure 4d,
which show that for a nanochannel of R = 3 nm increasing the
surface coverage of the tethers from 0.05 chains·nm−2 to 0.5
chains·nm−2 drives the complete desorption of proteins from
the channel. The desorption of the proteins is due to their very
large steric repulsions with the polymer tethers, which have a
very large volume fraction within the channel, see the blue
curve in Figure 4f. The complete exclusion of proteins from a
very narrow channel with increasing density of tethers is a
confinement effect that arises from the limited volume of the
channel. This effect is not observed on planar surfaces or in
channels with radii much longer than the length of the tethers.
An interesting prediction in Figure 3 is that %F non-

monotonically depends on R. The fact that %F can decrease
with decreasing R may be counterintuitive. Particularly, if one
assumes the fraction of binding to be constant (a normal
assumption made in the literature for strong binders), then
decreasing the channel radius would increase the volume
fraction of the channel occupied by proteins because the
number of available ligands increases linearly with R (i.e., it is
proportional to the channel internal area), while the cross-
sectional area to be blocked increases as R2. Therefore, if
complete binding occurs, the %F will always increase with
decreasing R. However, as R decreases there is also a decrease
in the fraction of bound ligands (see Figure 3b for intermediate
surface coverages and small radii) because confinement in
narrow channels enhances repulsive protein−protein and
protein−tether interactions. The decrease in the fraction of
ligand−receptor bonds with decreasing R is very large and it is
responsible for the nonmonotonic dependence of %F with R.
We next discuss the effect of the length of the tethers, Figure

5. In the case of a planar system, the number of bound proteins
is a monotonically increasing function of the length of the

linker (see Longo and Szleifer15). Long tethers allow the
proteins to distribute over a larger range of distances from the
surface than short ones, as long as the surface coverage is not
too large to completely prevent the partition of some proteins
within the polymer layer. Note that this behavior is allowed by
the fact that, on planar layers, the volume element as a function
of the distance from the surface is constant. On the other hand,
Figure 5a shows that %F is a nonmonotonic function of the
length of the tether for nanochannels of intermediate radii at
intermediate surface coverage of ligands. Figure 5b shows that
the nonmonotonic dependence of %F with N is due to a
nonmonotonic change of the fraction of bound ligands, ⟨f bound⟩.
The nonmonotonic dependence of binding efficiency on the
length of the tether can be understood by looking at the
molecular organization of the bound species and the tethers
within the channel. The first thing to consider is that increasing
the chain length of the tether at constant surface coverage
implies an increase of the volume occupied by the tethers, in
particular in the region close to the surface of the channel, see
Figure 6c. Thus, the structure of the bound proteins changes

significantly with the length of the tether based on two effects.
The first is the availability of a larger range of distances where
the proteins can bind as the polymer chain length increases.
The second, is the reduction in the number of bound proteins
close to the surface, as chain length increases, due to the larger
steric repulsions imposed by the presence of a larger number of
polymer segments there. Figure 6a shows that, as the chain
length increases, these effects lead to a decrease in the
magnitude of the first protein peak and the appearance of new
peaks away from the surface, corresponding to new layers of
proteins. These new layers allow increasing the total number of
proteins by distributing them within the whole channel, see the
volume fraction of the proteins in Figure 6b. Therefore, as the
length of the tethers increases, the competition between the
increase in the volume that is accessible to accommodate bound

Figure 5. Color map showing the percentage of the channel occupied
by bound proteins (%F, panel a) and the average fraction of ligands
that are bound to the proteins (⟨f bound⟩, panel b) as a function of
channel radius, R, and length of the tethers linking the ligands to the
surface of the channel, N. Other calculation parameters: σ = 0.1 chains·
nm−2, χ/χC = 0.0. Open circles indicate the conditions of the
calculations in Figure 6.

Figure 6. (a) Density of bound proteins (determined using the centers
of the proteins) as a function of the distance from the wall of the
channel, d, for different lengths of the tethers connecting the ligands to
the wall of the nanochannel (N). Other calculation parameters R = 7.5
nm and σ = 0.1 chains·nm−2. (b,c). Volume fraction of the bound
proteins (b) and the tethers (c) as a function of the distance from the
wall for the same conditions as panel a. The calculation parameters
used in the figure are indicated with open circles in Figure 5.
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proteins and the increase in steric repulsions with the tethers
results in the maximum in the fraction of bound proteins with
chain length shown in Figure 5a.
We finally discuss the role of protein−protein attractive

interactions. We model the interaction between proteins using
the expression for the van der Waals attractions between two
spheres of radius Rprot, see Supporting Information. The
strength of the interactions is given by the parameter χ, which
we normalize by the critical parameter χC that is the value of χ
required to produce phase separation of the proteins at the
working concentration of 500 nM (i.e., χC is the value of χ for
which the derivative of the chemical potential of the protein
with respect to the protein concentration is zero for Cprot = 500
nM, see Supporting Information). Figure 7 shows the effect of

χ/χC on the fraction of the pore filled by bound protein and the
average fraction of bound proteins. As expected, the fraction of
bound proteins increases with increasing protein−protein
attractions. However, the effect is more important for large
radii than for narrow channels. In narrow channels, protein−
tether steric repulsions are more important than protein−
protein attractive interactions. Thus, the increase of protein−
protein attractions produces only a small increase in the
fraction of bound protein. The increase of %F with χ/χC is
monotonic and we still observe the nonmonotonic dependence
of %F with R explained above for Figures 3 and 5.
Apparent Dissociation Constant and the Effect of

Protein Concentration. A common theme in all the results
presented so far is the large shift of the ligand−receptor binding
reaction equilibrium that occurs as a result of the confinement
in the nanochannels. Therefore, it is important to find
appropriate ways to quantify this effect and characterize the

chemical equilibrium under confined conditions. For instance,
one would like to define an apparent binding constant that can
be used later to construct binding isotherms. If we consider the
ligand receptor binding as a chemical reaction of the form

⇌ +LR L R (4)

where the ligands are bound to the surface through the tethers,
the common approach to describe the binding (adsorption or
chemical equilibrium) would be through the Langmuir
isotherm, which written in terms of the fraction of bound
ligands is

⟨ ⟩ =
+θf

C

K Cbound
prot

d prot (5)

where Cprot is the molar concentration of the protein in solution
and Kθ

d is the dissociation constant. In Figure 8a, we present

the Langmuir isotherms for a variety of different dissociation
constants Kθ

d (dashed lines). The isotherms change from no
binding to complete binding for a variation of 2 orders of
magnitude of the bulk protein concentration. On the other
hand, the predictions of the molecular theory for a typical set of
parameters and an intrinsic dissociation constant of 10−15 M
(blue line) show that a change of 12 orders of magnitude in
bulk protein concentration produces only a variation from
⟨f bound⟩ = 0 (no binding) to ⟨f bound⟩ = 0.6. In other words, the
dependence of the fraction of bound proteins predicted by the
theory in the confined nanochannel is much weaker than that
predicted by a Langmuir isotherm. The main failure in the
Langmuir isotherm is that its derivation assumes that the free

Figure 7. Color map showing the percentage of the channel occupied
by bound proteins (%F, panel a) and the average fraction of ligands
that are bound to the proteins (⟨f bound⟩, panel b) as a function of
channel radius, R, and strength of the vdW attractions between
proteins, χ/χC. Other calculation parameters: σ = 0.1 chains·nm−2 and
N = 10.

Figure 8. (a) Average fraction of bound ligands as a function of the
molar concentration of the proteins in bulk solution (blue line).
Calculation parameters: R = 7.5 nm, σ = 0.1 chains·nm−2, N = 10.
Dashed lines show the predictions of the Langmuir isotherm eq 5 for
different values of the dissociation constant, Kd (the predictions of the
molecular theory are for Kθ

d = 10−15 M). (b) Apparent dissociation
constant (determined from eq 6) as a function of R and Cprot. Other
calculation parameters: σ = 0.1 chains·nm−2, N = 10, χ/χC = 0.0.
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energy cost of binding a protein is independent of the number
of bound protein (i.e., independent of ⟨f bound⟩) and, therefore,
it neglects the effects of confinement and the molecular
environment. In the molecular theory, on the other hand, the
steric repulsion within the confined channel change with the
concentration of bound proteins. Therefore, the molecular
theory predicts that the free energy of binding increases
significantly as ⟨f bound⟩ increases. This effect is mainly due to
the increase in the repulsions among bound proteins. Note,
therefore, that the interpretation of experimental observations
based on the Langmuir isotherm would provide a quantitative
and qualitative wrong description of the behavior of these
systems.
To better quantify the binding, we show in Figure 8b an

apparent dissociation coefficient defined in accordance with eq
5, which we define as

=
− ⟨ ⟩
⟨ ⟩

K
f

f
C

(1 )
d,app

bound

bound
prot

(6)

Figure 8b shows that the apparent dissociation constant
determined from the predictions of the molecular theory
according to eq 6 changes by 15 orders of magnitude for a fixed
Kθ

d. The variation of the apparent dissociation constant over
such large range implies that defining an apparent constant as
the concentration of reactant where half of the species are
bound and assuming that the binding goes from complete to
zero in around 2 orders of magnitude of concentration is
incorrect and, thus, it needs to be seriously revised.
It is interesting to note that the molecular theory predicts

that ⟨fbound⟩ increases roughly as the logarithm of the protein
concentration (blue solid curve in Figure 8a). We observed a
similar trend for calculation conditions different from those in
Figure 8 (see Figure S5 in the Supporting Information). The
linear relation between ⟨f bound⟩ and the logarithm of the protein
concentration is, thus, a general trend that arises from the effect
of steric interactions on the apparent binding constant. Only a
few experimental studies have reported the effect of protein
concentration on the conductance of nanochannel sensors for
conical nanochannels and a limited range of concentrations
spanning 2 orders of magnitude.6,7 This experimental evidence
shows approximately linear relationships between the con-
ductance change and the logarithm of the concentration of the
analyte.
Blocking of Short Nanopores. In the previous sections

we considered long channels whose lengths are much longer
that their radii, (L ≫ R). Next, we concentrate our attention in
nanopores where the length is comparable to the radius. There
are several reasons for considering these types of pores. For
example, biological nanopores, such as Nuclear Pore Com-
plexes,36 correspond to this type of geometry. Furthermore,
using short pores for conductivity-based determinations may
lead to faster response times, since diffusion limitations in long
nanochannels can cause long equilibration times.11 In addition,
the results discussed in this section also qualitatively apply to
the tips of conical nanochannels.
Figure 9a shows the ratio of the average fraction of bound

ligands for a pore of length L to that for an infinitely long
channel. The fraction of bound ligands increases as the
nanochannel becomes shorter and this effect becomes more
pronounced as the length of the tethers increases. In order to
understand this effect, we present in Figure 9b the volume
fraction of bound proteins in the r−z plane. This plot is similar

to those in Figures 4b, 4e and 6b, with the exception that the
system is no longer homogeneous in the z direction, therefore
we show the density of proteins as a color map that depends
now both on r and z. The plot shows that for N = 20 there is a
nonzero volume fraction of bound proteins at the entrance of
the pore (this is also observed in the plot of bound protein
density, see Figure S3 in the Supporting Information). In other
words, the ligands attached to long tethers stretch in order to
reach the reservoirs on both sides of the membrane. Placing the
bound protein in the reservoirs reduces the steric repulsions
within the pore, hence the average fraction of bound ligands is
larger for short pores than for long channels.
The results of Figure 9 suggest that to maximize the fraction

of bound ligands for short nanopores the tethers should be long
enough to allow for a large number of bound proteins to be
located at the mouths of the pore (i.e., in the reservoirs).
However, it is important to emphasize that there is a maximal
optimal length, since tethers that are too long reduce the
capability of binding as was shown in Figure 5.

Figure 9. (a) Ratio of the average fraction of bound ligands in a short
nanopore of length L, ⟨f bound⟩L, to that in an infinitely long
nanochannel, ⟨f bound⟩∞, as a function of L for tethers of different
lengths (N). Other calculation parameters: R = 5 nm, σ = 0.1 chains·
nm−2, χ/χC = 0.0. (b) Color map for the volume fraction of bound
proteins for tether lengths of N = 2 (left panel) and N = 20 (right
panel). (c) Color map of the volume fraction of the tethers for the
same conditions as panel b. The calculations correspond to a pore of R
= 5 nm and L = 16 nm for σ = 0.1 chains·nm−2 and χ/χC = 0.0.
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Nanochannel Ionic Conductivity and the Effects of
Protein Size and Charge. The results presented in the
previous sections correspond to neutral model proteins. Now
we show the role of protein size and charge on binding and
ionic conductivity. Figure 10a shows a color map of the

percentage of the volume filled in the channel, %F, as a function
of the protein charge, Qprot (in units of elemental charge) and
radius of the protein, Rprot (for a fixed molar concentration of
proteins of 500 nM) for a channel of radius R = 4 nm and L ≫
R. For a fixed charge, %F nonmonotonically depends on Rprot.
Small proteins experience small steric repulsions and bind
efficiently (see ⟨f bound⟩ in Figure 10b), but they are small, which
results in a small %F. Large proteins, on the other hand, do not
bind effectively due to repulsive steric interactions with other
proteins and the polymeric tethers. Therefore, there is an
optimal protein size that maximizes %F. On the other hand,
both %F and ⟨fbound⟩ always decrease as the protein charge
increases due to the increasing electrostatic repulsions among
proteins.

For uncharged proteins, Qprot = 0, the change in conductivity
upon binding depends on the reduction of the available volume
within the channel for the mobile ions. For charged proteins,
on the other hand, the change in channel conductivity upon
binding depends both on the reduction of the available volume
and on the incorporation or release of counterions from the
channel. In order to study the contribution of each mechanism
to the conductance of the channel, we calculate the
conductance using the following expression reported in our
previous work:37

∫∑π=
=
+ −

G
L

F
RT

q D r c r r r
2

( ) ( ) d
i C A

H OH

i

R

i i

2

, ,

,

2

0

(7)

where F is Faraday’s constant, qi is the charge of species i and
ci(r) and Di(r) are the molar concentration and diffusion
coefficient of the species i at a distance r from the center of the
channel, respectively. Eq 7 is based on the Goldman constant-
field approximation37−39 and it is valid for very long channels
(L > ∼0.5 μm40) for which the access resistances are negligible.
This equation also implies a continuum description of ion
transport, which is valid for channel radii larger than two Debye
lengths (R > 1.4 nm for the ionic strength of 0.2 M used
here).41 We assume that the diffusion coefficients in eq 7 are
independent of r and equal to those in the bulk. This
approximation implies that the changes in conductivity upon
protein binding are mainly due to changes in the number of
ions within the channel rather than due to changes in their
mobility. In a previous work, the predictions of the theory were
shown to be in very good agreement with experimental
observations for the pH-dependent conductance of polyelec-
trolyte-modified nanochannels.37 Therefore, we are confident
that this approximation will produce valid predictions in the
present case as well. Finally, we assume a very small applied
potential, such that the fraction of bound proteins remains
equal to that in equilibrium (large applied potentials may affect
binding7,42)
Since we are interested in the relative change in conductance

upon binding, rather than in the absolute conductance, we will
define ΔG% as the percent change in conductance:

Δ =
−

×G
G G

G
% 100%0

0 (8)

where G0 and G are the conductances of the system before and
after protein binding, respectively. Figure 10c shows a color
map of ΔG% as a function of Qprot and Rprot. For proteins with
low charge (small Qprot) or proteins with Rprot greater than ∼1
nm, we find ΔG% < 0, i.e., a decrease in the channel
conductance upon protein binding. Under these conditions
(large and uncharged proteins), volume exclusion controls the
change in conductance upon protein binding. On the other
hand, for charged proteins with Rprot smaller than ∼1 nm we
observe that ΔG% > 0; therefore, the increase of conductance
due to the incorporation of the protein counterions to the
channel is larger than the decrease of conductance due to the
decrease in the available volume. The combined effects of
surface charge and volume exclusion can explain the
observation that streptavidin binding to biotin ligands within
nanochannels may lead either to a decrease6 or an increase20 in
conductance depending on the properties of the channel and
the composition of the solution. In fact, the relative
contribution of each mechanism depends also on the ionic

Figure 10. Color maps showing the percentage of the nanochannel
occupied by bound proteins (%F, panel a), the average fraction of
ligands that are bound to the proteins (⟨f bound⟩, panel b) and the
change in the conductance of the nanochannel upon protein binding
(ΔG%, panel c, see eq 8) as a function of the protein radius, Rprot, and
charge Qprot. The tethers in this calculation were uncharged. Other
calculation parameters: R = 4 nm, N = 10, σ = 0.1 chains·nm−2, χ/χC =
0.0.
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strength of the measuring solution: Karnik et al.14 showed that
the conductance of a biotin-modified nanochannel increased
upon streptavidin binding when the conductance was measured
at low ionic strength (and thus the effect of surface charge was
more important than volume exclusion), but it decreased at
high ionic strength, where volume exclusion is the mechanism
dominating the conductance.
In Figure 11, we analyze the case where the tethers

connecting the ligands and the walls of the channel have a

charge of −|e| per monomer, namely the tethers are
polyelectrolytes with charges of opposite sign to that of the
proteins. Figure 11a shows that the volume fraction of the
channel occupied by bound proteins (%F) is large for proteins
of intermediate size (R ∼ 0.7−1.2 nm) and all charges. In the
case of neutral tethers and highly charged proteins (Figure 10),
we have shown that protein uptake was prevented by repulsive
electrostatic interactions among proteins. In the case of the
calculations shown in Figure 11, the electrostatic attraction
between tethers and proteins counteracts the electrostatic
repulsions among proteins, thus large %F can be obtained for
charged proteins.
In Figure 11c, we show the change in channel conductance

upon protein binding (ΔG%) for the system of charged tethers.
We find that ΔG% < 0 for all combinations of protein charge

and size. This result is in marked contrast to that found for
uncharged tethers (Figure 10c), where the conductance
increased upon binding of small and highly charged proteins
due to the incorporation of counterions into the channel. In the
case of tethers with charges of opposite sign than the protein,
protein binding leads to a release of the counterions of both the
protein and the tether. In other words, the counterions that
neutralize the charge of the tethers before protein binding are
released as the charges of the protein neutralize the charges of
the tethers. This process results in a net decrease in the number
of mobile ions inside the channel, therefore the conductance of
the channel drops. We suggest that the combination of charge
neutralization and volume exclusion can lead to larger and more
reliable conductance drops than the volume-exclusion mecha-
nism alone, i.e., compare the maximum conductance drop of
ΔG% ∼ −60% for a large region of the Qprot−Rprot parameter
space in Figure 11c (combination of mechanisms) with the
maximum value of ΔG% ∼ −30% observed for uncharged
proteins in Figure 10c (volume exclusion only).

■ CONCLUSIONS

We presented here the first molecular description of protein
binding within nanopores and nanochannels in order to
understand the effects of confinement on ligand−receptor
binding equilibrium. In Figures 3 and 5, we showed that the
fraction of the channel filled by bound neutral proteins is
maximal for intermediate surface coverages (σ ∼ 0.05 chains·
nm−2), narrow channels (R ∼ 4 nm) and short linkers (N ∼ 2−
5). However, a more important conclusion is that the optimal
length of the tethers increases with R (Figure 5a). A tether
shorter than the optimal one will be unable to place bound
proteins near the center of the channel, which will result in a
decrease of %F. On the other hand, a tether longer than the
optimal one will unnecessarily increase the steric repulsions
within the channel, which will also reduce protein filling. The
calculations in Figure 5 reveal that the fully extended length of
the optimal tether should increase by approximately ∼0.9 nm
when the channel radius is increased by one nanometer (see
Figure S6 in the Supporting Information). In general, it is
claimed that channel blocking by proteins is feasible only when
the size of the protein and the diameter of the channel are
similar,19 which poses a limitation for sensing since very narrow
channels are difficult to prepare. The results in Figure 5 suggest
a workaround for this limitation: tethers of appropriate length
allow bound proteins to block the whole volume of the channel.
Binding of charged proteins results in changes of

conductance that are determined by a combination of the
volume-exclusion and the surface-charge mechanisms. The
competition between these two mechanisms may give rise to
complex behaviors as predicted here and observed exper-
imentally. For example, the binding of streptavidin to
immobilized biotin has been reported to decrease the
conductance of conical polymer nanochannels,5,6 to increase
that of glass nanopipettes20 and either to decrease or to
increase the conductance of silica parallel-plate nanochannels,
depending on the ionic strength of the solution.14 In this
context, an interesting prediction of the theory that may serve
to improve the reliability and sensitivity of nanochannel sensors
is that when the tethers and the proteins have charges of
opposite sign, binding leads to a large drop in conductance of
the system (see Figure 11). Siwy and co-workers employed a
similar effect to switch the current-rectification properties of

Figure 11. Same as Figure 10, but for polymeric tethers that have a
charge of −1 |e| per monomer.
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conical nanopores by binding positively charged avidin to biotin
ligands immobilized on negatively charged nanopore tips.19

At the fundamental level, we have shown that ligand−
receptor binding in nanoconfined environments is qualitative
and quantitatively different from the common description used
in bulk solution. Namely, the ideal solution approximation does
not work due to the importance of intermolecular interactions
in the confined pore. Moreover, these interactions cannot be
replaced by an effective parameter since they vary in large
degrees with all the experimental controllable variables studied.
As we have shown, the ligand−receptor binding curve can span
more than 10 orders of magnitude in bulk protein
concentration, as compared with the 2 orders of magnitude
predicted from the commonly used Langmuir isotherm. As a
result, the apparent dissociation constant varies more than 10
orders of magnitude with protein concentration; therefore, the
use of the concept of dissociation constant itself in nano-
confined environments should be revisited.
The theory provides fundamental understanding of the

factors that determine binding and its relationship to ionic
conductivity as well as guidelines for the optimal design of
nanochannel modifiers. Our theoretical methodology is an
enabling tool to study nanopores and nanochannels modified
by soft materials as it incorporates molecular information about
the components of the system, such as their size, shape,
conformations, charge and charge distribution, at a computa-
tional cost much smaller than computer simulations. This is a
key advantage that allows us to systematically explore the effect
of different variables on the molecular organization within the
channel and its electrical response. A systematic investigation is
important because of the complexity of these systems. For
example, we have shown that even for the simplest case of
uncharged proteins, the fraction of filled volume within the
pore varies nonmonotonically with the channel radius, the
surface coverage of the ligands, the length of the tethers and the
size of the proteins. It is important, however, to mention the
approximations behind our theory. Its mean-field treatment of
intermolecular interactions is valid only when each molecule
interacts with many other molecules. In the present case, our
approximation is expected to breakdown in the limit of very
large proteins and short pores, where there may be only a few
proteins bound. Therefore, we have limited the current study to
small proteins (Rprot < 1.5 nm), which yield several proteins per
pore; e.g., the short pores in Figure 7b are predicted to contain
∼21 proteins for N = 2 and ∼34 proteins for N = 20. For the
sake of simplicity, we have also neglected some interactions in
the present work, such as protein−surface interactions
responsible of nonspecific protein adsorption, acid−base
equilibrium and hydrogen bonding. While it is possible to
include these interactions in the theory43−45 and to consider in
more detail the properties of the protein (such as amino-acid
distribution46 and presence of multiple binding sites47), we
decided not to consider these additional interactions and
molecular details given the very complex behaviors that we
observed even in their absence. We expect that, in the future,
new experiments will yield detailed data sets and improve the
characterization of the nanochannels and that this information
will allow us to refine our models by including the relevant
interactions for each particular experimental system.
We should finally mention that, in its present formulation,

the molecular theory is an equilibrium theory. In some
experimental conditions,7 ligand−receptor binding clearly
reaches equilibrium conditions, but in many cases it is not

clear whether protein binding is kinetically or thermodynami-
cally controlled. The kinetics of pore blocking can also be used
to determine the concentration of the analyte.5 Thus, in future
work we plan to extend our investigations to consider the
kinetics of ligand−receptor binding in nanopores, nano-
channels and other nanoconfined environments.

■ METHODS
Our theoretical methodology is based on a previously developed
molecular theory,15,36,37,47 which is formulated here to model ligand−
receptor binding equilibria in nanopores and nanochannels. The
predictions of the theory have been shown to be in good agreement
with experimental observations for ligand−receptor binding on planar
surfaces34 and at liquid−liquid interfaces47 and the conductance of
polyelectrolyte-modified long nanochannels.37 The molecular theory
explicitly accounts for the size, shape, conformation and charge
distribution of all molecular species including the ligand, the receptor
and the bound pair and it predicts the amount of binding depending
on the bulk conditions, e.g., salt and protein concentration.

We formulate the molecular theory by writing down an approximate
free energy for the system as a functional of the probability of each
conformation of the tether chains, the densities of all mobile species in
the system (anions, cations, protons, hydroxyl ions, water molecules
and free proteins), the position-dependent fraction of ligands bound to
receptors in the proteins and the electrostatic potential. More
specifically, the free energy F is given by
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The terms in F account for: the translational entropy of the ions and
water molecules (first term), the translational and orientational
entropy of the free proteins (second term), the conformational
entropy of the tethers (third term), the electrostatic energy (fourth
term), the chemical free energy of the ligand−receptor equilibrium
(fifth and sixth terms) and the protein−protein vdW attractions
(seventh term). In eq 9, PP(r,α) is the probability of having a tether
chain in conformation α grafted at r, ρi(r) is the number density of
species i at r (for i = anions, cations, protons, hydroxyl ions and water
molecules), ρprot(r,r′) is the number density of proteins with center at
r and receptor site at r′, f unb(r) is the fraction of ligands at r that are
not bound to proteins, f b(r,r′) is the fraction of ligands at r that are
bound to proteins with center at r′, ψ(r) is the electrostatic potential at
r, g(r) is a function that describes the position-dependent protein−
protein attractions and χ sets the strength of these attractions. We
describe each term of eq 9 in detail in the Supporting Information.

In order to solve the molecular theory, we find the extremum of a
Legendre transform of F that considers constant chemical potentials
for all the mobile species with respect to the unknown functions
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PP(r,α), ρi(r), ρprot(r,r′), f unb(r), f b(r,r′) and ψ(r). The functional
minimization is subjected to the following constraints: (i) global
electroneutrality, (ii) packing constraint (modeling the repulsive,
excluded volume interactions) at r, i.e., the sum of the volume
fractions of all species at r is one and (iii) the sum of the fractions of
bound and unbound receptors at r is one. These constraints are
enforced using Lagrange multipliers.
The functional extremum of the free energy yields analytical

expressions for the unknown functions PP(r,α), ρi(r), ρprot(r,r′),
f unb(r), f b(r,r′) and ψ(r). For example, the density of free proteins is
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where r′ is a point on the surface of the protein with center at r, vw is
the molecular volume of a water molecule, π(r) is the Lagrange
multiplier associated with the packing constraint (repulsive inter-
actions), which plays the role of a position-dependent osmotic
pressure,48 vprot(r″,r) and qprot(r″,r) are the volume and charge that a
protein with center at r has in the volume between r″ and r″ + dr″ and
μprot and μ0prot are the chemical potential and the standard chemical
potential of the proteins, respectively. Note that the Boltzmann factor
in eq 10 has contributions from electrostatic, excluded volume
interactions and vdW attractions. In turn, the interaction fields π(r)
and ψ(r) depend on ρprot(r,r′) (see Supporting Information), which
shows the coupling that exists between the different intermolecular
interactions and the distribution of the chemical species in the theory.
The equation for the ligand−receptor equilibrium results from the

functional minimization of eq 9 with respect to f unb(r) and f b(r,r′):
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Eq 11 describes the binding of a protein with its center at r′ and its
receptor at r with a ligand site at r. The dissociation constant in eq 11
has units of (proteins·vw)/nm

3. We can obtain the commonly used
dissociation constant in molar units, Kθ

d,

=θK
[L][R]
[LR]d (12)

by dividing Kθ
d by vw·(10

−24 dm3/nm3)·6.02 × 1023 proteins/mol.
Note that the local fraction of bound ligands at r in eq 11 depends on
the density distribution of proteins, which is a function of ψ(r) and
π(r), according eq 10, and they are determined by the global
minimization of the free energy and therefore depends on the
molecular distributions everywhere in the pore. The ligand−receptor
binding equilibrium within the channel behave differently from that in
the bulk due to the effects of confinement and local molecular
environment through the fields π(r) and ψ(r).
The expressions for ψ(r), ρi(r) and PP(r, α) that result from finding

the functional extremum of the free energy are reported and discussed
in the Supporting Information. We cast the final set of integro-
differential equations into cylindrical coordinates, discretize it and
solve it using numerical methods (see Supporting Information). The
input information required by the theory comprises the properties of
the tether (chain length, grafting surface density and volume of a
segment), the properties of the protein (size, charge and bulk
concentration), the value of the dissociation constant for the ligand−
receptor equilibrium in the bulk, the properties of the solution (salt
concentration and pH) and a large set of random self-avoiding
polymer conformations for the tether, which are not allowed to
overlap with the walls of the channel. Solving the theory provides us
with structural information, such as the position-dependent density of
each molecular species, the fraction of bound ligands and the
electrostatic potential, as well as with thermodynamic information.
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